On Equivariant Homotopy Theory for Model Categories

نویسنده

  • MARC STEPHAN
چکیده

Two approaches to equivariant homotopy theory in a topological or ordinary Quillen model category are studied and compared. For the topological model category of spaces, we recover that the categories of topological presheaves indexed by the orbit category of a fixed topological group G and the category of G-spaces form Quillen equivalent model categories.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Short Note on Models for Equivariant Homotopy Theory

These notes explore equivariant homotopy theory from the perspective of model categories in the case of a discrete group G. Section 2 reviews the situation for topological spaces, largely following [May]. In section 3, we discuss two approaches to equivariant homotopy theory in more general model categories. Section 4 discusses some examples to which the material from Section 3 applies. In part...

متن کامل

Master Thesis Elmendorf’s Theorem for Cofibrantly Generated Model Categories

Elmendorf’s Theorem in equivariant homotopy theory states that for any topological group G, the model category of G-spaces is Quillen equivalent to the category of continuous diagrams of spaces indexed by the opposite of the orbit category of G with the projective model structure. For discrete G, Bert Guillou explored equivariant homotopy theory for any cofibrantly generated model category C an...

متن کامل

Restriction to Finite-index Subgroups as Étale Extensions in Topology, Kk-theory and Geometry

For equivariant stable homotopy theory, equivariant KK-theory and equivariant derived categories, we show how restriction to a subgroup of finite index yields a finite commutative separable extension, analogous to finite étale extensions in algebraic geometry.

متن کامل

Homotopy Theory of Modules over Diagrams of Rings

Given a diagram of rings, one may consider the category of modules over them. We are interested in the homotopy theory of categories of this type: given a suitable diagram of model categories M(s) (as s runs through the diagram), we consider the category of diagrams where the object X(s) at s comes from M(s). We develop model structures on such categories of diagrams and Quillen adjunctions tha...

متن کامل

Elmendorf’s Theorem via Model Categories

In [2], working in the category of compactly generated spaces U , Elmendorf relates the equivariant homotopy theory of G-spaces to a homotopy theory of diagrams using fixed point sets. The diagrams are indexed by a topological category OG with objects the orbit spaces {G/H}H for the closed subgroups H ⊂ G. Although, his general assumption there is that G is a compact Lie group, a formulation of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013